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Is 1:1 Always Most Powerful?

• Common belief: 1:1 allocation maximises power and efficiency

• Widely echoed in the literature, e.g.:

“balanced group sizes will maximise a study’s statistical power”
(Dumville et al., 2006).

“Trials using unequal allocation will therefore either have less statistical power or
will be more expensive and entail exposing more patients than necessary to a novel
intervention and research procedures.” (Hey and Kimmelman, 2014).

• But: This assumption can be misleading — unequal allocation isn’t always worse



Some Common Notation

• Two treatment arms, 0 (control) and 1 (experimental).

• A study with fixed number of patients n

• Potential outcome Yki
iid∼ Bern(pk), i = 1, . . . , nk ; k = 0, 1; n0 + n1 = n

• pk is success probability on arm k and qk = 1− pk failure probability

Note, outcome could be non-binary and we could include a random n (early stoppoing).

• Let Ai ∈ {0, 1} denote the allocated treatment for patient i

• Observed outcome Yi = Yi ,ai (assumes consistency/SUTVA)



Which Allocation Maximises Power?

• Power-maximising allocation depends on:
• endpoint type (binary, continuous, etc.),
• target effect measure (e.g., mean difference, odds ratio),
• and—most importantly—variance within each group.

• For the Wald test comparing means:

Z =
p̂1 − p̂0√
p̂0q̂0
n0

+ p̂1q̂1
n1

• Neyman (1934) allocation maximises statistical power by allocating proportionally to
standard deviations

n1
n0

=
σ1
σ0



Binary Endpoint: Theoretical Difference between ER and Neyman
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Figure 1: The horizontal axis shows the varying value of p1 while p0 takes a fixed value in each sub
figure. For each combination of p1 and p0 the vertical axis shows the value of the theoretical Neyman
allocation (ρN1) and Equal Randomisation (ρER).



Binary Trial Example

Setup: 60-patient early-phase cancer trial comparing with binary outcome (e.g.,
RECIST-based), using a Wald test at two-sided α = 0.05 level.
Fixed Unequal Randomisation (FUR) uses a 1:2 allocation (Control:Treatment),
approximating Neyman allocation (σ1/σ0 ≈ 0.678).

Table: Allocation strategy comparison. Metrics: type-I error (under p0 = p1 = 0.05), power (under
p0 = 0.05, p1 = 0.3), proportion on superior arm (n1/n), and Expected Number of Successes (ENS).
Monte Carlo error < 0.2% (Pin et al., 2025).

Design Type-I Error Power n1/n ENS

ER 3.0% 80.0% 0.50 10.5
FUR (1:2) 5.2% 81.5% 0.67 13

• FUR increases power by 1.5 percentage points compared to equal randomization (ER).

• Additionally, more patients allocated to the superior arm, improving patient-benefit.



Summary and Discussion I

• Non-binary example with larger power gain in manuscript.
• Neyman allocation is optimal in theory but power gains depend on many factors:

1. the endpoint,
2. the total sample size,
3. the magnitude of the treatment effect difference,
4. the relationship between the variances of the treatment arms.

• FUR or RAR can modestly boost power and allocate more patients to better treatments.

• Allocation decisions should weigh statistical, patient-benefit, operational, and economic
factors.

1. Justify your allocation choice

Using 1:1 allocation is common, but there should be a clear reason for it — not just habit.

2. Power is not a reason for 1:1
Equal allocation does not maximize power in many cases, especially when arms differ.

We urge thoughtful justification of all allocation ratios, including 1:1.
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What is a Response-adaptive Design?

Definition: A Response-adaptive design is an experimental design that allows for the
allocation of experimental units to the different (treatment) options to dynamically
change based on available data with the goal to optimise the experiment (in some way).

• Response-adaptive Randomisation (RAR) is a subclass of the above which:

(1) is implemented through randomisation (in a probabilistic manner) and;

(2) and where the resulting allocation probabilities to change (or adapt) based on the
evidence/data collected at interim points.

• RAR is perhaps the oldest form of an adaptive design of experiments. Proposed by
Thompson (1933) for saving individuals otherwise sacrificed to an inferior treatment



Why use RAR (or not)?

RAR may be used for attaining a given experimental objective or a combination of them.

To achieve a level of statistical power with a given test at the end of the study

To assign more patients to a superior treatment when evidence suggests superiority within
the trial (rare disease setting)

To select a set of promising arms (within a large set) to carry forward to a confirmatory
stage (early phase setting)

...



A broad(er) look at RAR: 2023 RAR review, discussion and rejoinder



Some Common Notation
• Two treatment arms, 0 (control) and 1 (experimental).

• A study with fixed number of patients n

• Potential outcome Yki
iid∼ Bern(pk), i = 1, . . . , nk ; k = 0, 1; n0 + n1 = n

Note, outcome could be non-binary and we could include a random n (early stoppoing).

• Let Ai ∈ {0, 1} denote the allocated treatment for patient i

• Observed outcome Yi = Yi ,ai (assumes consistency/SUTVA)

• P(Ai = k) is the probability of patient i receiving the arm k .

• Equal (simple) randomization is such that P(Ai = k) = 1/2 ∀i , k .
• Assumption: Patients arrive sequentially and outcomes are immediately observable,

• RAR is defined as function that maps past outcomes and allocations to a value in [0, 1]:

πi = P(Ai = k |Yi−1, ai−1)



Neyman and RSHIR allocation proportions

• General approach: If n fixed and p0, p1 known. Derive optimal sampling proportions by
optimizing a (linear) objective function subject to a (non linear) constraint.

• We want to test H0 : p1 − p0 = 0 vs H1 : p1 − p0 > 0
with Wald test: Z = p̂1−p̂0√

s2∆p̂(n0,n1)
where s2∆p̂(n) =

p̂0q̂0
n0

+ p̂1q̂1
n1

and q̂k := 1− p̂k .

Q Neyman (1934): What is minimal total sample size to achieve given a fixed power
level? Let ρ = n1

n0+n1
(and 1− ρ = n0

n0+n1
),

minρ n0 + n1 s.t. s
2
∆p̂(ρ) = C Solution Neyman allocation: ρN1 =

√
p1q1√

p0q0+
√
p1q1

= σ1
σ0+σ1

Q Rosenberger et al. (2001): What is the minimum expected number of failures given a
power constraint (or a fixed variance level) ?

minρ q0 n0 + q1 n1 s.t. s
2
∆p̂(ρ) = C Solution R[SHIR] allocation: ρR1 =

√
p1√

p0+
√
p1
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Theoretical Comparison of Allocation Proportions

Figure 2: p0 = 0.1 Figure 3: p0 = 0.3



Estimation and Targeting

1. Estimate proportions using MLE

2. Target them using Efficient Randomized-Adaptive Design (ERADE) by Hu et al. (2009).
For a parameter α ∈ (0, 1), we sample patient j + 1 towards treatment 1 with probability

p1(n1(j), ρ(j)) =


αρ(j), if n1(j)/j > ρ(j),

ρ(j), if n1(j)/j = ρ(j),

1− α(1− ρ(j)), if n1(j)/j < ρ(j).

and then Example:
α = 0.5, n0(9) = 4 and n1(9) = 5 p0(9) = 25% and p1(9) = 60%

ρR1(9) =

√
0.6√

0.25 +
√
0.6

= 0.608 but n1(j)/j = 5/9 = 0.55

p1(n(9), ρ̂(9)) = 1− 0.5 · (1− 0.608) = 0.804
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The Impact of Measures of Interest

• In the previous section: derived optimal allocation proportions for the simple mean
difference using the Wald test.

• But: if we change the measure of interest (e.g., to log odds, relative risk, odds ratio,
etc.), then

• the test statistic changes,

• and with it, the optimization problem changes as well.

• ⇒ Different measures of interest can lead to different optimal allocations.





Other Measures of Interest

Table 1: Overview of measures of interest with respective allocation proportions that minimize failures
pminF or maximize power pN ().

Simple difference Relative Risk Odds ratio Log relative risk Log odds ratio

θ p0 − p1 q1/q0
p0
q0

/p1
q1

log (q1/q0) log

(
p0
q0

/p1
q1

)
p∗minF

√
p1√

p0 +
√
p1

√
p1q0√

p0q1 +
√
p1q0

√
p0q0√

p0q0 +
√
p1q1

√
p1q0√

p0q1 +
√
p1q0

√
p0q0√

p0q0 +
√
p1q1

p∗N

√
p1q1√

p0q0 +
√
p1q1

√
p1q0√

p0q1 +
√
p1q0

√
p0q0√

p0q0 +
√
p1q1

√
p1q0√

p0q1 +
√
p1q0

√
p0q0√

p0q0 +
√
p1q1



Other Measures of Interest - Neyman

Figure 4: p0 = 0.9



Other Measures of Interest - minF

Figure 5: p0 = 0.9



Other measure of interest - Conclusion

1. ER still only optimal when p0 = p1

2. Areas where efficacy and patient benefit conflict change

3. Areas where specific optimal RAR could be useful depends on measure of interest and
parameter region of interest.

4. For relative risk patient-benefit and power align.
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Motivation

• A challenge connected to optimal RAR?

Type-I error rate control in literature on optimal RAR widely ignored

• Why is it important?

Type-I error rate control requirement for (confirmatory) design approval by FDA or EMA

• Solution:

Redefining optimization problem: different test statistic & estimators instead of
unknown true values





CR, Neyman and RSHIR for Wald test



CR, Neyman and RSHIR for Wald test



Restricted Randomisation, Neyman and RSHIR for Wald test (n=50)



CR, Neyman and RSHIR for Wald test



Type-I Error Rate
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Type-I Error Rate
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Summary of 4 Existing Approaches
• Agresti & Caffo correction

• Adding a success and failure to each arm.

• Ensuring non-zero variance estimators
• Sampling with equal probability if one of the sample variances is equal to zero.

• Extending the Burn-In period B
• Number of patients randomized with equal (restricted) randomization (CR) before the

adaptive period starts.

• Using the score test
• Wald test inherently inflates type-I error (?) even under CR.

• Testing the hypothesis H0 : p0 = p1 using

Z0 =
p̂1 − p̂0√

p̂q̂
(

1
n0

+ 1
n1

) , (1)

where p̂ is the overall proportion of successes in the trial.

→ can reduce but not control type-I error rate



Rethinking Optimal RAR

Original proportions ρN1 and ρR1 for Wald test derived for true unknown values only
optimal in the limit and require MLE Instead: Redefining optimization problem for score
test and MLEs directly i.e. use p̂0 and p̂1 instead of p0 and p1 Score test and Wald
test differ in variance of the test statistics

p̂q̂

(
1

n0
+

1

n1

)
vs.

p̂0q̂0
n0

+
p̂1q̂1
n1

Leading to two new proportions:
Wald Score

Neyman ρN1 =
√
p1q1√

p0q0+
√
p1q1

ρnN0
=

√
p̂0q̂0√

p̂0q̂0+
√
p̂1q̂1

RSHIR ρR1 =
√
p1√

p0+
√
p1

ρnR0
solved numerically

Interestingly: ρnN0
→ 1− ρN1



Theoretical Comparison
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Figure 6: p0 = 0.3
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Type-I Error Rate
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Early Phase Example



Confirmatory Example



Conclusion for Type-I Eorror

• Summary of Contributions
• Two new optimal allocation proportions for two-armed trials with binary outcomes.

• Achieved type-I error rate control across the parametric space.

• Power and patient-benefit gain (or loss) depends on region of the parametric space.

• Limitations
• Does not yet extend to multi-armed trials.

• Binary endpoints have unique variance properties, influencing optimal allocation.

• Future Research Directions
• Alternative measures of interest: adapt approach for relative risk and odds ratios.

• Alternative tests: nonparametric and exact tests.
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RAR: Why? And where next?

• Final thoughts:
• Fully sequential RAR −→ defines a theoretical upper bound on adaptivity gains.

• When well-designed and feasible, RAR can enhance patient benefit, personalization, and
statistical efficiency, among other benefits.

• Analytically complex, yet of significant practical importance.

• In practice, RAR is one component of a broader adaptive design, not a standalone feature.

• Where to next?
• Nonparametric RAR methods

• Choosing the optimal burn-in period

• Exact tests & randomisation-based inference

• Software (design and implementation – in the making)
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